PORTADA.
Dos trabajos sobre el cáncer de lectura imprescindible
¿De dónde viene el cáncer y por qué no ha desaparecido con la evolución?
Publicado en The Conversation el 31 marzo 2021
Autores: Audrey Arnal. Post-doctorante, laboratoire MIVEGEC (UMR IRD 224-CNRS 5290-Université de Montpellier), Institut de recherche pour le développement (IRD)
Benjamin Roche. Directeur de Recherche, Institut de recherche pour le développement (IRD)
Frédéric Thomas. Directeur de Recherche au CNRS, laboratoire MIVEGEC (UMR IRD 224-CNRS 5290-Université de Montpellier), Centre national de la recherche scientifique (CNRS)
El cáncer plantea multitud de cuestiones a los biólogos, gran parte de ellas todavía sin terminar de resolver. ¿Cómo se explican los orígenes de esta enfermedad? ¿Por qué es tan difícil de curar? ¿Por qué persiste la vulnerabilidad al cáncer en la mayoría de los organismos pluricelulares?
Los enfoques basados en la explicación de los mecanismos de esta enfermedad y las investigaciones clínicas no son suficientes frente a estos interrogantes. Debemos observar el cáncer desde una nueva perspectiva, adoptando una visión evolutiva. En otras palabras, debemos mirar el cáncer a través de los ojos de Charles Darwin, padre de la teoría de la evolución.
Desde hace unos años, el esfuerzo conjunto de biólogos evolutivos y oncólogos está fomentando reflexiones que se traducen en avances transversales beneficiosos para ambas disciplinas, a la vez que cambian nuestra comprensión de la enfermedad.
Cómo la evolución de los organismos pluricelulares prepara el terreno para el cáncer
El cáncer afecta al conjunto del reino animal pluricelular. La razón es que se trata de una enfermedad ancestral relacionada con la aparición de los metazoos (animales compuestos de varias células, en oposición a los protozoos que están constituidos por una sola célula), hace más de quinientos millones de años.
La aparición de tales organismos complejos requirió el desarrollo de altos niveles de cooperación entre la multitud de células que los componen. En efecto, esa cooperación se sostiene por comportamientos complementarios y altruistas, en particular por la apoptosis o suicidio celular (por el cual una célula activa su autodestrucción al recibir una cierta señal) y por la renuncia a la reproducción directa por parte de toda célula que no sea una célula sexual. Es decir, la evolución hacia entes pluricelulares estables se produjo por la selección de adaptaciones que, por un lado, facilitaban el funcionamiento colectivo y, por otro lado, reprimían los reflejos unicelulares ancestrales.
El cáncer representa una ruptura de esa cooperación pluricelular, seguida de la adquisición de adaptaciones que permiten que esas células «renegadas» se perfeccionen en su propio modo de vida. Dicho de otra forma, las células malignas comienzan a «hacer trampas». Pueden hacerlo pues han sufrido mutaciones genéticas (modificaciones de la secuencia de genes) o epigenéticas (modificaciones que cambian la expresión de los genes y que, además de transmisibles, son reversibles, al contrario de las mutaciones genéticas), o incluso las dos, lo que les confiere un valor selectivo más alto en comparación con las células de comportamiento cooperativo. Puede consistir, por ejemplo, en ventajas de crecimiento, de multiplicación, etc. De la misma forma, es imperativo que las células portadoras de esas modificaciones se sitúen en un microentorno favorable a su proliferación.
Si estas «rebeliones celulares» no son reprimidas de manera correcta por los sistemas de defensas del organismo (como el sistema inmunitario), la abundancia de células cancerosas puede aumentar localmente. Consecuencias: los recursos se agotan y estas células pueden iniciar entonces comportamientos individuales o colectivos de dispersión y de colonización hacia nuevos órganos, las tristemente conocidas metástasis responsables de la mayoría de los decesos debidos al cáncer.
De ese modo, en unos meses o años, una sola célula cancerosa puede generar un «ecosistema» complejo y estructurado, el tumor sólido (comparable a un órgano funcional), así como metástasis más o menos diseminadas por el organismo.
Un aspecto intrigante de esta enfermedad reside en el número significativo de semejanzas entre los atributos de las células cancerosas provenientes de diferentes órganos, individuos e incluso especies, lo que sugiere que los procesos que tienen lugar en cada caso son similares. Sin embargo, cada cáncer evoluciona como una nueva entidad, ya que, aparte de los cánceres transmisibles antes mencionados, los tumores desaparecen siempre junto a sus huéspedes, sin transmitir sus innovaciones genéticas ni fenotípicas.
Entonces, ¿cómo se explican esas semejanzas?
Persistencia del cáncer a lo largo del tiempo evolutivo
Desde un punto de vista evolutivo, hay dos hipótesis que pueden explicar la aparición del cáncer y la similitud de sus atributos.
La teoría del atavismo explica el cáncer como un retorno a capacidades anteriores de las células, entre las que se encuentra la liberación de un programa de supervivencia excelentemente conservado, siempre presente en toda célula eucariota y, por tanto, en todo organismo pluricelular. Se cree que la selección de este programa ancestral tuvo lugar durante el período precámbrico, que comenzó hace 4550 millones de años y terminó hace 540 millones de años. Durante este período, que vio surgir la vida sobre nuestro planeta, las condiciones medioambientales eran muy distintas de las actuales y, a menudo, desfavorables. Las fuerzas selectivas que actuaban sobre los organismos unicelulares favorecieron las adaptaciones para la proliferación celular.
Algunas de esas adaptaciones, seleccionadas a lo largo de la vida unicelular, quedaron presentes para siempre, más o menos escondidas en nuestros genomas. Cuando su expresión escapa de los mecanismos de control, comienza una lucha entre los rasgos ancestrales unicelulares y los rasgos pluricelulares actuales y es entonces cuando puede aparecer un cáncer. Es más, esta hipótesis podría explicar también por qué las células cancerosas se adaptan tan bien a los entornos ácidos y pobres en oxígeno (anóxicos), pues estas condiciones eran habituales en el Precámbrico.
La segunda hipótesis implica un proceso de selección somático –las células somáticas agrupan la totalidad de las células de un organismo a excepción de las células sexuales– que conduce a una evolución convergente, es decir, a la aparición de rasgos análogos. Esta hipótesis sugiere que la aparición de los rasgos celulares que caracterizan las células «tramposas» se somete a una fuerte selección cada vez que aparece un nuevo tumor, con independencia de cuáles sean las causas inmediatas de dichos rasgos. Estos procesos de selección somática, al tener lugar en entornos regidos en gran medida por los mismos condicionantes ecológicos (como los que reinan en el interior de los organismos pluricelulares), darían lugar a una evolución convergente.
Eso podría explicar las similitudes que observamos a través de la diversidad del cáncer. No olvidemos que solo vemos los cánceres que consiguen desarrollarse, pero no sabemos cuántos «candidatos» fracasan al no conseguir adquirir las adaptaciones necesarias en el momento adecuado.
Estas dos hipótesis no son excluyentes: la reaparición de un programa ancestral puede estar seguida de una selección somática que culmine en una evolución convergente.
Cualquiera que sea la razón del origen del cáncer, hay una pregunta que sigue sin respuesta: si esta enfermedad suele causar la muerte del huésped, ¿por qué no ha sido más eficaz la selección natural en conseguir que los organismos pluricelulares sean completamente resistentes al cáncer?
Los animales grandes no tienen más cáncer
Los mecanismos de supresión del cáncer son numerosos y complejos. Cada división celular puede provocar mutaciones somáticas que alteren los mecanismos genéticos que controlan la proliferación celular, la reparación del ADN o la apoptosis, perturbando así el control del proceso de formación del cáncer (carcinogénesis).
Si cada división celular conlleva una probabilidad dada de que se produzca una mutación cancerígena, entonces, el riesgo de desarrollar un cáncer debería ser función del número de divisiones celulares a lo largo de la vida de un organismo. Sin embargo, las especies de gran tamaño y más longevas no tienen más cáncer que aquellas pequeñas que viven menos tiempo.
En las poblaciones naturales animales, la frecuencia del cáncer varía, en general, entre un 0% y un 40 % para todas las especies estudiadas y no existe relación con la masa corporal. En los elefantes y en los ratones se observan niveles de prevalencia del cáncer bastante similares, a pesar de que los elefantes desarrollen muchas más divisiones celulares a lo largo de su vida que los ratones. Este fenómeno se conoce como «la paradoja de Peto».
La explicación de esta paradoja reside en el hecho de que las fuerzas evolutivas han seleccionado mecanismos de defensa más eficaces en los animales grandes que en los pequeños, lo que permite reducir el lastre ligado al cáncer por el aumento de tamaño. Por ejemplo, los elefantes tienen veinte copias del gen supresor de tumores TP53, mientras que los humanos solo disponemos de dos.
Encontramos excepciones notables a esta tendencia general, como es el caso de especies de pequeño tamaño con una longevidad fuera de lo normal. Estas especies tampoco desarrollan apenas cáncer. Un buen ejemplo es el de la rata topo desnuda (Heterocephalus glaber), una especie cuyos individuos viven mucho tiempo (especie longeva) y no desarrollan tumores espontáneos, con la excepción de algunos casos de cáncer detectados de forma anecdótica.
Una enfermedad que se manifiesta de forma tardía
Recordemos también que la eficacia de las defensas contra el cáncer experimenta una disminución una vez que los organismos han llevado a cabo lo esencial de su reproducción, ya que las presiones evolutivas son menores en esta etapa de la vida. Esta pérdida de eficacia, junto con la acumulación de mutaciones a lo largo del tiempo, explica que la mayor parte de los cánceres (mama, próstata, pulmón, páncreas…) aparezcan en la segunda mitad de la vida.
Una de las implicaciones evolutivas capitales es que si, desde una perspectiva darwiniana, el cáncer no es una preocupación relevante cuando se manifiesta tras la fase reproductiva, eso significa también que nuestras defensas se habrán optimizado por selección natural no para erradicar de forma sistemática los procesos oncogénicos sino para controlarlos mientras tengamos capacidad reproductora…
Al final, esas defensas low cost, cuyo objetivo es resistir frente a los tumores, se revelan más ventajosas para salvaguardar el éxito reproductor que como estrategias de erradicación sistemática, que serían sin duda mucho más costosas. El sistema inmunitario, por ejemplo, no trabaja a cambio de nada… En general, los seres vivos se rigen por soluciones de compromiso, trade-offs en inglés, que hacen que toda inversión en una función necesite de una serie de recursos y energía que ya no estarán disponibles para otras funciones. Nuestras defensas contra las enfermedades, el cáncer incluido, no quedan fuera de esta regla de funcionamiento.
Por desgracia, esas defensas low cost contra el cáncer se convierten al final en bombas con retardo… En otras palabras, ¡la lógica darwiniana no nos lleva siempre a resultados que casen con nuestras expectativas como sociedad en términos de salud!
Aunque la mayor parte de las mutaciones cancerígenas se producen en células somáticas a lo largo de la vida, hay casos raros de cáncer cuya causa se encuentra en mutaciones hereditarias en la línea germinal, la que produce las células sexuales. Esas mutaciones congénitas, a veces, son más frecuentesde lo que se esperaríadel equilibrio mutación-selección.
Esta paradoja se puede explicar por diversos procesos evolutivos. Por ejemplo, se ha sugerido que, probablemente, la selección natural no actuará sobre esas mutaciones si, una vez más, sus efectos negativos sobre la salud solo se manifiestan cuando haya terminado el período reproductivo.
Por otro lado, se podría recurrir a la teoría de la pleiotropía antagonista. Esta teoría estipula que ciertos genes tienen efectos contrarios sobre la probabilidad de supervivencia / reproducción según la edad considerada: sus efectos serían positivos al comienzo de la vida y negativos en el resto. Si el efecto positivo inicial es notable, es posible que la selección retenga esa variante genética aunque cause una enfermedad mortal más tarde.
Por ejemplo, las mujeres que presentan una mutación de los genes BRCA1 y BRCA2 tienen un riesgo significativamente más alto de desarrollar cánceres de mama o de ovario, pero esas mutaciones parecen estar relacionadas con una mayor fertilidad.
Implicaciones en materia de tratamientos
El cáncer, auténtico lastre de las poblaciones humanas, es ante todo un fenómeno regido por procesos evolutivos, desde su origen en la historia de la vida hasta su desarrollo en tiempo real en una persona enferma. La separación tradicional entre oncología y biología evolutiva, por tanto, debe desaparecer, pues limita nuestra comprensión de la complejidad de los procesos que culminan en la manifestación de la enfermedad.
Esta nueva perspectiva del cáncer podría resultar útil para el desarrollo de soluciones terapéuticas innovadoras que limiten los problemas asociados a las estrategias de tratamiento disponibles en la actualidad. Estas terapias de altas dosis, que buscan matar el máximo de células malignas, acaban provocando a menudo la proliferación de células resistentes. A la inversa, la terapia adaptativa, profundamente enraizada en la biología evolutiva, podría constituir un enfoque alternativo.
Esta estrategia consiste en disminuir la presión que conllevan las terapias de altas dosis con el fin de eliminar solo una parte de las células cancerosas sensibles. Se trata de mantener un nivel suficiente de competición entre las células cancerosas sensibles y las células cancerosas resistentes, con el fin de evitar o de limitar la proliferación sin restricciones de las resistentes.
Una problemática que no se limita al ser humano
Hasta hace poco, rara vez la oncología había adoptado los conceptos de la biología evolutiva para mejorar la comprensión de los procesos malignos. De igual forma, los ambientalistas y los biólogos evolutivos apenas se han interesado en la existencia de estos fenómenos en sus investigaciones sobre los seres vivos. Pero las cosas cambian y la consideración del cáncer –o, más bien, de los procesos oncogénicos en su conjunto– en el seno de la fauna salvaje suscita un entusiasmo creciente en el seno de la comunidad de los ambientalistas y de los biólogos evolutivos.
En efecto, a día de hoy, el cáncer se muestra con claridad como un modelo biológico pertinente para estudiar la evolución de los seres vivos, así como un fenómeno biológico de importancia para comprender diversas facetas de la ecología de las especies animales y sus consecuencias sobre el funcionamiento de los ecosistemas.
Aunque no siempre evolucionen hacia formas invasivas o metastásicas, los procesos tumorales son omnipresentes en los metazoos y hay estudios teóricos que sugieren que, probablemente, en estos últimos tengan influencia en variables fundamentales en ecología, como son los rasgos de historia de la vida, las aptitudes competitivas, la vulnerabilidad a los parásitos y a los depredadores, o incluso la capacidad de dispersarse. Esos efectos provienen tanto de consecuencias patológicas de los tumores como de los costes asociados al funcionamiento de los mecanismos de defensa de los huéspedes.
La comprensión de las consecuencias ecológicas y evolutivas de las interacciones huésped-tumor se ha vuelto también un tema de investigación de referencia en ecología y en biología evolutiva en estos últimos años.
Estos cuestionamientos científicos son todavía más pertinentes cuando la práctica totalidad de los ecosistemas del planeta, sobre todo los medios acuáticos, está contaminada hoy en día por sustancias de origen antrópico y, a menudo, mutágenicas. Por lo tanto, es primordial mejorar la comprensión de las interacciones huésped-tumor y sus efectos en cascada dentro de las comunidades, para así predecir y anticipar las consecuencias de las actividades humanas en el funcionamiento de los ecosistemas y en el mantenimiento de la biodiversidad.
Artículo traducido gracias a la colaboración con Fundación Lilly.
“Un tumor es la célula y sus circunstancias”
A pesar de las muchas investigaciones contra el cáncer, aún se desconoce qué sucede cuando se origina. Según Direna Alonso, que ha publicado en la revista Nature un reciente estudio sobre el inicio del cáncer de páncreas, la clave de este big bang es una combinación de genética y entorno.
Por Jesús Méndez . Publicado en SINC el 29/3/2021
Se sabe mucho de los tumores una vez se desarrollan, pero el comienzo tiene muchos interrogantes. Direna Alonso investiga esos orígenes. / Foto cortesía de la investigadora.
“Lo imposible es posible intentarlo” José Miguel Alonso Fernández-Aceytuno, arquitecto y paisajista
“Queríamos saber qué pasa para que una célula normal inicie un cáncer”, resume la investigadora Direna Alonso Curbelo. El objetivo era en apariencia simple y, al mismo tiempo, paradójicamente ambicioso: “Hasta hace poco no se podía entender bien, porque las técnicas no lo permitían y solo podía estudiarse cuando ya era tarde. Pero conocer qué pasa en los momentos iniciales del cáncer es importantísimo para poder mejorar los diagnósticos y los tratamientos”.
El proyecto se inició hace seis años en el Memorial Sloan Kettering Cancer Center de Nueva York, adonde llegó tras completar su tesis en el CNIO de Madrid. El propósito concreto era desentrañar el inicio del tipo más frecuente de cáncer de páncreas, particularmente sibilino y mortal. Ahora, mientras planifica su futuro, se publican los resultados en la revista Nature.
Esto es lo que han encontrado y esta es parte de su historia.
Los golpes del entorno
Se sabe mucho de los tumores una vez se desarrollan, pero el comienzo es una suerte de momento pequeño y oscuro con muchos interrogantes
El inicio del cáncer es un big bang de la biología. Se sabe mucho de los tumores una vez se desarrollan, pero el comienzo es una suerte de momento pequeño y oscuro con muchos interrogantes. Por ejemplo, los tejidos sanos acumulan mutaciones, cambios en el ADN típicos del cáncer con la edad, pero en la inmensa mayoría de las ocasiones se autolimitan y no van más allá. ¿De qué depende que vayan o no vayan más allá? La idea actual es que, para desarrollarse un tumor, una célula necesita recibir diversos golpes, superar una serie de obstáculos. Y esto, muchas veces, parece que no pasa únicamente por acumular mutaciones.
En el año 1985, el grupo de la investigadora Mina Bissell presentó unos experimentos sorprendentes. Usando un virus que provoca tumores en los pollos, comprobaron con cierto pasmo que solo aparecían en la zona de la inyección. Aunque se introdujera en la sangre, el virus solo actuaba en el lugar del pinchazo. Más aún: si la punción se hacía en un ala y al mismo tiempo se provocaba una herida en el ala contraria, entonces aparecían dos tumores, uno en cada una. El virus parecía necesitar que el entorno se rompiera.
Ese es uno de los obstáculos principales que el cáncer debe superar, el del microambiente o microentorno normal de las células, la arquitectura que les sirve de protección.
Y esa es una de las posibles explicaciones a por qué se ha curado el cáncer tantas veces en una placa de plástico de laboratorio. Porque allí se prescinde del entorno.
El trabajo
La inmensa mayoría de los tumores de páncreas tienen una mutación muy agresiva en un gen llamado KRAS. Sin embargo, esta no parece suficiente para iniciar el cáncer, se necesita una agresión añadida. Generalmente esta agresión es una inflamación del entorno, como la que provoca una pancreatitis. Algo similar a la herida en el ala de los pollos. “Esto era algo que ya se sabía, lo había demostrado el grupo de Mariano Barbacid en el CNIO”, explica Alonso. Lo que no se sabía era qué pasaba cuando el tumor comenzaba.
Para estudiarlo usaron ratones con o sin la mutación a los que se sometía o no a un daño químico, la simulación en el laboratorio de una pancreatitis. Luego utilizaron todo un arsenal de técnicas para analizar lo que pasaba en el páncreas con la mutación o sin ella, cómo se comportaban frente al daño o en ausencia de él. Y, si se iniciaba el cáncer, qué sucedía al inicio y al final. Un estudio de casi todos los paisajes posibles.
«Las células con la mutación se aprovechan de los mecanismos que usan los tejidos normales para repararse y regenerarse frente a la agresión, pero los desvían para iniciar el tumor» Direna Alonso
Los resultados fueron tan contundentes como se esperaba: en general, ni la mutación ni el daño por sí solos daban lugar a tumores. Estos aparecían cuando las dos situaciones se combinaban. “Las células con la mutación se aprovechan de los mecanismos que usan los tejidos normales para repararse y regenerarse frente a la agresión, pero los desvían para iniciar el tumor”, explica Alonso. “Y esto encaja con la imagen que se tiene del cáncer como de una herida que no sana. Un tumor es la célula y sus circunstancias”.
El gran reto fue estudiar qué diferenciaba a la célula tumoral de la normal, qué sucedía para que en los ratones sin la mutación el páncreas se regenerase sin problemas y que los mutados, en cambio, iniciasen un cáncer fatal. “Encontramos casi 10.000 cambios entre uno y otro proceso”, asegura Alonso, “y demostramos que algunos de ellos no solo acompañaban al tumor, sino que contribuían a su formación”.
La inmensa mayoría de estos cambios no están en las letras o la secuencia de ADN, sino en las marcas químicas que se le asocian para que se enrolle de forma más o menos laxa. Son lo que se conoce como cambios epigenéticos (por encima de la genética). En general actúan abriendo o cerrando el ADN, permitiendo o impidiendo su lectura, y son claves para definir la identidad celular.
La imagen sería parecida a la de alguien que encuentra un coche con el motor encendido —la mutación en KRAS— y pretende robarlo, pero las puertas están cerradas y las ventanillas bajadas. Solo necesita que alguna se abra para poder llevárselo
El ADN se abre en ciertas regiones para dar las instrucciones de reparación de la célula, y ahí se desata el riesgo. La mutación aprovecha el momento en que la rendija asoma y abre las compuertas al descontrol. La imagen sería parecida a la de alguien que encuentra un coche con el motor encendido —la mutación en KRAS— y pretende robarlo, pero las puertas están cerradas y las ventanillas bajadas. Solo necesita que alguna se abra para poder llevárselo.
Solo que si lo consigue comprobará que no tenía frenos. “Y que lleva el GPS mal configurado”, precisa Alonso, así que además “lo llevará por el camino equivocado”.
Las aplicaciones y la continuación
Hay una pregunta repetitiva y ciertamente molesta que se les suele hacer a quienes se dedican a la ciencia básica, llamada así no por su sencillez sino por no dirigirse directamente a una aplicación concreta. La pregunta es: ¿esto para qué sirve?
Así pues: ¿esto para qué?
En un comentario que acompaña al artículo en la revista Nature, los investigadores australianos Sane Vassiliadis y Mark A. Dawson concluyen: “Dado que muchos de nuestros tejidos […] tienen clones de células con mutaciones que están sometidos a daños del entorno, estos hallazgos pueden tener implicaciones de gran alcance. Sus resultados deberían formar la base de estudios futuros”.
Alonso tiene claras las posibles utilidades, y también varios de los escollos. Una es que abre la puerta a posibles tratamientos contra uno de los tumores más mortales y agresivos, aunque no sea sencillo. En el laboratorio probaron a evitar la activación de la mayor parte de los genes desviados, a mantener el freno del coche (hay fármacos que pueden hacer esto —los inhibidores de BRD4, en la jerga— aunque sus efectos son muy generales). “Esto era eficaz, pero también perjudicaba a la reparación del órgano”, explica. “Ahora necesitamos identificar dianas concretas y específicas del tumor que podamos atacar con éxito”.
«Si conocemos qué señales aparecen al inicio podríamos buscarlas en la sangre» Direna Alonso
Otra posible aplicación es el diagnóstico precoz, detectar el tumor antes de que dé síntomas y multiplicar así las opciones de curación (el principal problema del cáncer de páncreas es que suele detectarse demasiado tarde). “Si conocemos qué señales aparecen al inicio podríamos buscarlas en la sangre”, apunta Alonso. Este análisis, conocido como biopsia líquida, es una de las esperanzas en la lucha contra el cáncer, pero tiene dificultades. Por ejemplo, se necesitan señales que aparezcan en el tumor y solo allí, para evitar así un aluvión de posibles diagnósticos falsos.
Alonso es plenamente consciente, de ahí que hicieran “un esfuerzo por distinguirlo de otros procesos como los de una pancreatitis”. También reconoce que ese no era su objetivo principal y que “hay otros grupos que son especialistas en eso”. Lo que sí tiene claro es que “entender lo que pasa en las células es el primer paso para poder llegar a ello”.
La siguiente pregunta es: ¿y ahora qué?
“Los objetivos son tres”, resume Alonso. “Quiero estudiar cuáles son los genes alterados más importantes en el tumor, cuál es la célula concreta que lo origina y entender mejor las señales del ambiente, lo cual servirá seguramente para mejorar los tratamientos de inmunoterapia”. Y todo eso, si es posible, quiere hacerlo en España. “Mi ilusión es ser científica y no tener que renunciar a mi país. No quiero volver a España a jubilarme”.
El origen y el entorno: una biografía
La frase que encabeza este artículo es la que preside también la tesis doctoral de Direna Alonso, una tesis sobre el melanoma o cáncer de piel realizada en el CNIO de Madrid. La firma José Miguel Alonso Fernández-Aceytuno, un reconocido arquitecto y paisajista canario, quien murió por un melanoma en 2004. Y que era el padre de la investigadora.
Como en tantas otras biografías, “yo no tenía una vocación clara”, reconoce Alonso. “Me gustaban muchas cosas y recuerdo pensar de forma ñoña que quería dedicarme a algo que mejorase el mundo. Mi padre me dijo entonces: cualquier trabajo que hagas podría mejorar el mundo, es la actitud lo que cuenta”.
Una vez decidido que estudiaría algo relacionado con la salud, escogió Farmacia “porque mezclaba muchos aspectos” y fue en segundo de carrera cuando a su padre le diagnosticaron el tumor.
“Fue muy duro”, reconoce Alonso, aún emocionada cuando piensa en ello. “Recuerdo la sensación de frustración al ver que en los libros de texto no estaba la solución a lo que le pasaba a mi padre”. Fue entonces cuando decidió que quería investigar sobre el cáncer. Y justo mientras estaba en conversaciones para entrar en el CNIO, el centro empezaba una línea de investigación sobre melanoma dirigida por la científica Marisol Soengas. Alonso se unió a su grupo.
“Desde entonces se han desarrollado varios tratamientos contra el melanoma, pero por entonces apenas había nada”, explica Alonso. “Y el cáncer de páncreas está hoy como lo estaba el melanoma antes”. En esa línea quiere continuar.
«Creo que debemos empezar a valorar y visibilizar mucho más el fracaso como algo natural en la investigación. No somos solo nuestro currículum y nuestras publicaciones» Direna Alonso
“Afortunadamente, he conseguido una beca de “la Caixa” que sirve de ayuda para pasar de ser investigadora posdoctoral a iniciar un grupo propio de investigación”. Esa beca es la que le puede facilitar continuar el proyecto, pero obtenerla no fue un proceso sencillo. “Creo que debemos empezar a valorar y visibilizar mucho más el fracaso como algo natural en la investigación”, comenta.
“Es cierto que conseguí esta beca, pero también me han rechazado otras. Una cosa que me parece positiva es que en este caso la concedieron antes incluso de que este trabajo estuviera aceptado para ser publicado. Aunque importante, los investigadores no somos solo nuestro currículum y nuestras publicaciones”.
Ahora su ilusión es volver a España, aunque aún no tiene nada decidido. “La cantidad de inversión que ha tenido este proyecto en Estados Unidos ha sido brutal. En otros lugares habría sido seguramente el único proyecto de todo el laboratorio, no una línea más”, reconoce. “Pero en España hay grupos punteros que están haciendo trabajos muy importantes con mucha menos financiación. Ojalá hubiera más, pero tenemos que quitarnos complejos, fuera se nos valora mucho”.
En España hay grupos punteros que están haciendo trabajos muy importantes con mucha menos financiación que en Estados Unidos. Ojalá hubiera más, pero tenemos que quitarnos complejos, fuera se nos valora mucho
Al final de la conversación se le pregunta casi de pasada por qué eligió Nueva York después de Madrid. “Ya había estado durante unos meses mientras hacía la tesis”, contesta. “Es una ciudad donde pasan muchas cosas, tanto a nivel científico como cultural. El laboratorio al que vine era grande, trataba muchos temas y dejaba bastante libertad. Pero además tenía fama de divertido. Y, bueno, el entorno nos influye a las personas, no solo a las células”.
Fuente: SINC
Leave a reply